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Overview

• Our mission
- Help improve Berkeley UPC Environment

- Stress translator and runtime
- Determine performance bottlenecks (if any)

- Outreach
- Showcase features of UPC

- Continue explorations in PGAS languages
- Validate design decisions
- Question others
- Suggest extensions
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Our environment at scale

• NAS Multigrid Class D (1024 x 1024 x 1024)
• Written using 1-sided style
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Sparse Matrix – Vector 
Multiplication

• Compute y = A*x for distributed sparse matrix A
• Key component of solvers
• Irregular – threads require variable number of 

elements of x
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SPMV using memcpy 
extensions

• Implemented using non-blocking indexed gets

spmv(A,x) 
// Compute Ax for sparse A
non-blocking get of remote values of x
computation of part of result using local values of x
sync
computation of rest of result using remote values of x

• Significantly simplified code, particularly setup
• Not tuned yet, but shows promise
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Outreach: Parallel Triangulation

• First step in many physical simulations
• Lots of dynamic data movement (~ 4K LOC + Triangle)
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Improving the Delaunay 
Triangulation Code

• Message coalescing performed manually
- Eventually automatic

• Teams library further optimized and extended
- Now includes a distributed vector facility

• Fast redistribution code implemented
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The effort continues…

• Message coalescing in practice
• Further improvements to Triangulation code
• More examples using the memcpy extensions

- Performance tuning
• Programs using collectives

- Are they the “right” interface?
• More involvement in language specification


